Cách tính đạo hàm của hàm số lượng giác cực hay

Tính đạo hàm của hàm số lượng giác

A. Phương pháp giải

Quảng cáo

Vận dụng công thức tính đạo hàm của hàm số :

Trong số đó hàm số y= f(x) có đạo hàm tại các điểm mà hàm số xác nhận

B. Ví dụ minh họa

Ví dụ 1. Tính đạo hàm của hàm số y= sin (2x+ 8)?

A. 2 cos(2x+ 8)        B. cos( 2x+ 8)        C. –cos( 2x+ 8)        D. -2cos( 2x+ 8)

Hướng dẫn giải

+ vận dụng công thức đạo hàm của hàm hợp ta có;

y’=cos⁡( 2x+8).( 2x+8)’ = 2cos( 2x+ 8)

Chọn A.

Ví dụ 2. Tính đạo hàm của hàm số: y= cos( x2+ 7x- 9)?

A.- sin( x2 + 7x- 9)        B.- sin ( x2+ 7x – 9)( x2+ 7x- 9)

C. – (2x+7). sin(x2 + 7x- 9)        D. sin(x2+ 7x- 9)( 2x+7)

Hướng dẫn giải

Vận dụng công thức đạo hàm của hàm hợp ta có:

y’= -sin⁡(x2+7x-9).(x2+7x-9)’ = – sin(x2+ 7x- 9).( 2x+ 7).

Chọn C.

Quảng cáo

Ví dụ 3. Tính đạo hàm của hàm số: y= sin 8x+ cos 2x

A. cos8x – sin2x        B. 8 cos8x – 2sin 2x

C. 8.cos8x + 2sin2x        D. – cos8x + sin 2x

Hướng dẫn giải

Ta có: y’=( sin8x)’+(cos2x)’=8 cos⁡8x-2 sin⁡2x

Chọn B.

Ví dụ 4.Tính đạo hàm của hàm số: y=2 sin⁡( √(x2+4x)-1) ?

Hướng dẫn giải

Ví dụ 5.Tính đạo hàm của hàm số y= tan( 4x+ 1) – cot 2x?

Hướng dẫn giải

Ví dụ 6. Tính đạo hàm của hàm số: y=tan⁡( √(x2+2x))

Hướng dẫn giải

Ví dụ 7. Tính đạo hàm của hàm số: y= sin( x2- 3x) – tan(x2- 1)?

Hướng dẫn giải

Ví dụ 8. Tính đạo hàm của hàm số: y= sin4 ( 6x-2)?

A. 4.sin3 ( 6x-2)

B. 4.sin3 ( 6x-2).cos⁡( 6x-2)

C. 24.sin3 ( 6x-2).cos⁡( 6x-2)

D. -24.sin3 ( 6x-2).cos⁡( 6x-2)

Hướng dẫn giải

Ta có: y’=4.sin3 ( 6x-2).[sin⁡( 6x-2) ]’

⇔ y’= 4.sin3 ( 6x-2).cos⁡( 6x-2).( 6x-2)’

⇔ y’= 24.sin3 ( 6x-2).cos⁡( 6x-2)

Chọn C.

Quảng cáo

Ví dụ 9. Tính đạo hàm của hàm số y= xsin(x+ 1)?

A. sin(x+ 1) + x. cos( x+ 1)        B. cos( x+ 1) – x.sin ( x+1)

C. – sin( x+ 1) + x.cos( x+ 1)        D. sin( x+ 1) – x.cos(x+ 1)

Hướng dẫn giải

Vận dụng công thức đạo hàm của một tích ta có:

y’=( x’ ).sin⁡(x+1)+ x.[sin⁡(x+1)]’

⇔ y’=1.sin⁡(x+1)+x.cos⁡(x+1 ) ( x+1)’

See also  Hướng dẫn cài đặt HA cho Web-server bằng Pacemaker + Corosync, DRDB trên CentOS 7

⇔ y’=sin⁡(x+1)+x.cos⁡( x+1).

Chọn A.

Ví dụ 10.Tính đạo hàm của hàm số y= ( 1+ tanx)4

Hướng dẫn giải

Ví dụ 11. Tính đạo hàm của hàm số y= √(sin⁡4x)

Hướng dẫn giải

Áp dụng công thức đạo hàm của hàm hợp y= √u với u= sin4x ta có:

Ví dụ 12. Tính đạo hàm của hàm số y= √(cos⁡( x3- x2+2))?

Hướng dẫn giải

Vận dụng công thức đạo hàm của hàm hợp y =√u với u= cos⁡( x3- x2+2) ta có

Ví dụ 13. Tính đạo hàm của hàm số y= sin( tanx)?

Hướng dẫn giải

Vận dụng công thức đạo hàm của hàm hợp và đạo hàm của hàm số lượng giác ta có;

Ví dụ 14.Tính đạo hàm của hàm số y= sin2x. cosx

A. 2cos2x – sin2x .cosx        B. – sinx. cos2x + sin3x

C. 2sinx. cos2x + sin3x        D. 2sinx. cos2x – sin3x

Hướng dẫn giải

Vận dụng công thức đạo hàm của hàm số lượng giác và đạo hàm của một tích ta có:

y’=( sin2 x)’.cosx+ sin2 x( cosx)’

⇔ y’=2sinx.( sinx)’.cosx+ sin2x.(-sinx)

⇔ y’=2sinx.cosx.cosx- sin3 x = 2sinx. cos2x – sin3x

Chon D

Ví dụ 15. Tính đạo hàm của hàm số y= x/cosx

Hướng dẫn giải

Vận dụng công thức đạo hàm của một thương ta có:

Ví dụ 16. Tính đạo hàm của hàm số y= (x2+ 2x).cos x

A. ( 2x+2).cosx+( x2+2x).sinx B. ( 2x+2).cosx-( x2+2x)

C. ( 2x+2).cosx-( x2+2x).sinx D. Lời giải khác

Hướng dẫn giải

Áp dụng công thức đạo hàm của một tích ta có:

y’=( x2+2x)’.cosx+( x2+2x).( cosx)’

⇔y’=( 2x+2).cosx-( x2+2x).sinx

Chọn C.

Ví dụ 17. Tính đạo hàm của hàm số y= (1- cos 2x) (2- sin3x)

A. y’=-2sin2x.( 2-sin3x)+3cos 3x( 1- cos2x)

B. y’=2sin2x.( 2-sin3x)-3cos 3x( 1- cos2x)

C. y’=2sin2x.( 2-sin3x)+3cos 3x( 1- cos2x)

D. Lời giải khác

Hướng dẫn giải

Vận dụng công thức đạo hàm của một tích ta có

y’=( 1-cos2x)’.( 2-sin3x)+( 1-cos2x).( 2-sin3x)’

⇔ y’=sin⁡2x.( 2x)’.( 2-sin3x)+( 1-cos2x).( -cos3x).( 3x)’

⇔ y’=2sin2x.( 2-sin3x)-3cos 3x( 1- cos2x)

Chọn B.

Ví dụ 18. Tính đạo hàm của hàm số:

Hướng dẫn giải

Ví dụ 19. Tính đạo hàm của hàm số sau

Hướng dẫn giải

C. Bài tập vận dụng

Câu 1: Tính đạo hàm của hàm số y= sin (x2+ 4x- 20)?x

A. ( 2x- 4) cos(x2+ 4x – 20 )        B. (x2+ 4x- 20). cos(x2 +4x- 20)

C. (2x+ 4).cos( x2+ 4x- 20)        D. -2cos( x2+4x- 20)

See also  Top 10 thực phẩm có tính axit cao gây hại cho sức khỏe

Hiển thị lời giải

+ Vận dụng công thức đạo hàm của hàm hợp ta có;

y’=cos⁡(x2+ 4x-20).( x2+4x-20)’ = cos(x2+ 4x- 20).( 2x+ 4)

Chọn C

Câu 2: Tính đạo hàm của hàm số: y= cos( x2+√x – 2)?

A. – sin(x2+ √x – 2).( 2x+ 1/(2√x)).        B.- sin ( x2+√x – 2)( x2+√x- 2)

C. – (2x+√x). sin(x2 + √x- 2)        D. sin(x2+ 7x- 2)( 2x+ √x)

Hiển thị lời giải

Vận dụng công thức đạo hàm của hàm hợp ta có:

y’= -sin⁡(x2+√x-2).(x2+√x-2)’ = – sin(x2+ √x – 2).( 2x+ 1/(2√x)).

Chọn A.

Câu 3: Tính đạo hàm của hàm số: y= 3sin 2x – 4cos 6x

A. – 6 cos2x + 24 sin6x        B. 6cos2x + 24sin 6x

C. 6.cos2x + 2sin6x        D. 3cos2x + 4sin x

Hiển thị lời giải

Ta có: y’=( 3sin2x)’- (4cos6x)’=3.2 cos⁡2x+4.6 sin⁡6x

Hay y’=6cos2x+24. sin⁡6x

Chọn B.

Câu 4: Tính đạo hàm của hàm số: y=4 sin⁡( √(2x+3)-x2+2x) ?

Hiển thị lời giải

Câu 5: Tính đạo hàm của hàm số y= 3tan(x2 – 1) – 4cot 4x?

Hiển thị lời giải

Câu 6: Tính đạo hàm của hàm số: y=tan⁡( √(2×2+x))+x -10

Hiển thị lời giải

Câu 7: Tính đạo hàm của hàm số: y= sin[ (x- 1)( x+ 2) + 10] – tan(x3- x2)?

Hiển thị lời giải

Câu 8: Tính đạo hàm của hàm số: y= sin3 ( √(4x+2))?

Hiển thị lời giải

Câu 9: Tính đạo hàm của hàm số y= ( 2x+ 2) .sin( 2x- 3)?

A. sin⁡(2x-3)+2(2x+2).cos⁡( 2x-3).

B. 2sin⁡(2x-3)+(2x+2).cos⁡( 2x-3).

C. 2sin⁡(2x-3)-2(2x+2).cos⁡( 2x-3).

D. 2sin⁡(2x-3)+2(2x+2).cos⁡( 2x-3).

Hiển thị lời giải

Vận dụng công thức đạo hàm của một tích ta có:

y’=( 2x+2)’.sin⁡(2x-3)+ (2x+2).[sin⁡(2x-3)]’

⇔ y’=2.sin⁡(2x-3)+( 2x+2).cos⁡(2x-3 ) (2x-3)’

⇔ y’=2sin⁡(2x-3)+2(2x+2).cos⁡( 2x-3).

Chọn D.

Câu 10: Tính đạo hàm của hàm số y= ( -cotx+ tanx)3

Hiển thị lời giải

Vận dụng công thức đạo hàm của hàm hơp y= un với u= -cotx+ tanx ta được”

y’=3.(-cot⁡x+tanx)2.(-cotx+tanx)’

Câu 11: Tính đạo hàm của hàm số y= √(sin⁡(x3+ x2-x))

Hiển thị lời giải

Áp dụng công thức đạo hàm của hàm hợp y= √u với u= sin⁡(x3+ x2-x) ta có:

Câu 12: Tính đạo hàm của hàm số y= √(cos3 ( 2x+2) ) ?

Hiển thị lời giải

Vận dụng công thức đạo hàm của hàm hợp y =√u với u= cos3 ( 2x+2) ta có

Câu 13: Tính đạo hàm của hàm số y= 2cos(3cot 2x)?

See also  Máy Tính Bảng Giá Rẻ

Hiển thị lời giải

Vận dụng công thức đạo hàm của hàm hợp và đạo hàm của hàm số lượng giác ta có;

y’=-2 sin⁡( 3cot2x).( 3.cot2x)’

Câu 14: Tính đạo hàm của hàm số y= sin( 2x- 3).cos( 8- 4x)

A. 2 cos⁡( 2x-3).cos⁡( 8-4x)+2 sin⁡( 2x-3).sin⁡( 8-4x)

B. – 2 cos⁡( 2x-3).cos⁡( 8-4x)-8 sin⁡( 2x-3).sin⁡( 8-4x)

C. – 2 cos⁡( 2x-3).cos⁡( 8-4x)-4 sin⁡( 2x-3).sin( 8-4x)

D. 2 cos⁡( 2x-3).cos⁡( 8-4x)+4 sin⁡( 2x-3).sin( 8-4x)

Hiển thị lời giải

Vận dụng công thức đạo hàm của hàm số lượng giác và đạo hàm của một tích ta có:

y^’=[sin⁡( 2x-3)]’.cos⁡( 8-4x)+sin⁡( 2x-3).[cos⁡(8-4x)]’

⇔ y’=cos⁡( 2x-3).(2x-3)’.cos⁡( 8-4x)

+sin( 2x-3).( -sin⁡( 8-4x) ).( 8-4x)’

⇔y’=2 cos⁡( 2x-3).cos⁡( 8-4x)+4 sin⁡( 2x-3).sin( 8-4x)

Chọn D.

Câu 15: Tính đạo hàm của hàm số

Hiển thị lời giải

Vận dụng công thức đạo hàm của một thương ta có:

Câu 16: Tính đạo hàm của hàm số y= √(2×3+ x2-1) .sinx

Hiển thị lời giải

Áp dụng công thức đạo hàm của một tích ta có:

Câu 17: Tính đạo hàm của hàm số y= ( 2x +cos x) ( cos2x- sin3x)?

A. ( 2- sin⁡x) .( cos2x-sin3x)+(2x+cosx).(2sin2x-3cos3x)

B. ( 2+ sin⁡x) .( cos2x-sin3x)+(2x+cosx).(- 2sin2x-3cos3x)

C. ( 2- sin⁡x) .( cos2x-sin3x)+(2x+cosx).(- 2sin2x-3cos3x)

D.Lời giải khác

Hiển thị lời giải

Vận dụng công thức đạo hàm của một tích ta có

y’=( 2x+ cosx)’.(cos2x-sin3x)+( 2x+ cosx).( cos2x-sin3x)’

⇔ y’=( 2- sin⁡x) .( cos2x-sin3x)+(2x+cosx).(- 2sin2x-3cos3x)

Chọn C.

Câu 18: Tính đạo hàm của hàm số

Hiển thị lời giải

Vận dụng công thức đạo hàm của một thương

Câu 19: Tính đạo hàm của hàm số y= 1/cot⁡( x2+2x) ?

Hiển thị lời giải

Câu 20: Tính đạo hàm của hàm số:

Hiển thị lời giải

Câu 21: Tính đạo hàm của hàm số sau: y=sin⁡(x+1)/(x-2)

Hiển thị lời giải

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com

Đã có app VietJack trên smartphone, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.


Nhóm học tập facebook miễn phí cho teen 2k4: fb.com/groups/hoctap2k4/

Theo dõi chúng tôi miễn phí trên mxh facebook và youtube:

Theo dõi chúng tôi miễn phí trên mxh facebook và youtube:

Nếu thấy hay, hãy khuyến khích và chia sẻ nhé! Các phản hồi không phù phù hợp với nội quy phản hồi website sẽ bị cấm phản hồi vĩnh viễn.