Cách tính đạo hàm của hàm số lượng giác cực hay
Tính đạo hàm của hàm số lượng giác
A. Phương pháp giải
Quảng cáo
Vận dụng công thức tính đạo hàm của hàm số :
Trong số đó hàm số y= f(x) có đạo hàm tại các điểm mà hàm số xác nhận
B. Ví dụ minh họa
Ví dụ 1. Tính đạo hàm của hàm số y= sin (2x+ 8)?
A. 2 cos(2x+ 8) B. cos( 2x+ 8) C. –cos( 2x+ 8) D. -2cos( 2x+ 8)
Hướng dẫn giải
+ vận dụng công thức đạo hàm của hàm hợp ta có;
y’=cos( 2x+8).( 2x+8)’ = 2cos( 2x+ 8)
Chọn A.
Ví dụ 2. Tính đạo hàm của hàm số: y= cos( x2+ 7x- 9)?
A.- sin( x2 + 7x- 9) B.- sin ( x2+ 7x – 9)( x2+ 7x- 9)
C. – (2x+7). sin(x2 + 7x- 9) D. sin(x2+ 7x- 9)( 2x+7)
Hướng dẫn giải
Vận dụng công thức đạo hàm của hàm hợp ta có:
y’= -sin(x2+7x-9).(x2+7x-9)’ = – sin(x2+ 7x- 9).( 2x+ 7).
Chọn C.
Quảng cáo
Ví dụ 3. Tính đạo hàm của hàm số: y= sin 8x+ cos 2x
A. cos8x – sin2x B. 8 cos8x – 2sin 2x
C. 8.cos8x + 2sin2x D. – cos8x + sin 2x
Hướng dẫn giải
Ta có: y’=( sin8x)’+(cos2x)’=8 cos8x-2 sin2x
Chọn B.
Ví dụ 4.Tính đạo hàm của hàm số: y=2 sin( √(x2+4x)-1) ?
Hướng dẫn giải
Ví dụ 5.Tính đạo hàm của hàm số y= tan( 4x+ 1) – cot 2x?
Hướng dẫn giải
Ví dụ 6. Tính đạo hàm của hàm số: y=tan( √(x2+2x))
Hướng dẫn giải
Ví dụ 7. Tính đạo hàm của hàm số: y= sin( x2- 3x) – tan(x2- 1)?
Hướng dẫn giải
Ví dụ 8. Tính đạo hàm của hàm số: y= sin4 ( 6x-2)?
A. 4.sin3 ( 6x-2)
B. 4.sin3 ( 6x-2).cos( 6x-2)
C. 24.sin3 ( 6x-2).cos( 6x-2)
D. -24.sin3 ( 6x-2).cos( 6x-2)
Hướng dẫn giải
Ta có: y’=4.sin3 ( 6x-2).[sin( 6x-2) ]’
⇔ y’= 4.sin3 ( 6x-2).cos( 6x-2).( 6x-2)’
⇔ y’= 24.sin3 ( 6x-2).cos( 6x-2)
Chọn C.
Quảng cáo
Ví dụ 9. Tính đạo hàm của hàm số y= xsin(x+ 1)?
A. sin(x+ 1) + x. cos( x+ 1) B. cos( x+ 1) – x.sin ( x+1)
C. – sin( x+ 1) + x.cos( x+ 1) D. sin( x+ 1) – x.cos(x+ 1)
Hướng dẫn giải
Vận dụng công thức đạo hàm của một tích ta có:
y’=( x’ ).sin(x+1)+ x.[sin(x+1)]’
⇔ y’=1.sin(x+1)+x.cos(x+1 ) ( x+1)’
⇔ y’=sin(x+1)+x.cos( x+1).
Chọn A.
Ví dụ 10.Tính đạo hàm của hàm số y= ( 1+ tanx)4
Hướng dẫn giải
Ví dụ 11. Tính đạo hàm của hàm số y= √(sin4x)
Hướng dẫn giải
Áp dụng công thức đạo hàm của hàm hợp y= √u với u= sin4x ta có:
Ví dụ 12. Tính đạo hàm của hàm số y= √(cos( x3- x2+2))?
Hướng dẫn giải
Vận dụng công thức đạo hàm của hàm hợp y =√u với u= cos( x3- x2+2) ta có
Ví dụ 13. Tính đạo hàm của hàm số y= sin( tanx)?
Hướng dẫn giải
Vận dụng công thức đạo hàm của hàm hợp và đạo hàm của hàm số lượng giác ta có;
Ví dụ 14.Tính đạo hàm của hàm số y= sin2x. cosx
A. 2cos2x – sin2x .cosx B. – sinx. cos2x + sin3x
C. 2sinx. cos2x + sin3x D. 2sinx. cos2x – sin3x
Hướng dẫn giải
Vận dụng công thức đạo hàm của hàm số lượng giác và đạo hàm của một tích ta có:
y’=( sin2 x)’.cosx+ sin2 x( cosx)’
⇔ y’=2sinx.( sinx)’.cosx+ sin2x.(-sinx)
⇔ y’=2sinx.cosx.cosx- sin3 x = 2sinx. cos2x – sin3x
Chon D
Ví dụ 15. Tính đạo hàm của hàm số y= x/cosx
Hướng dẫn giải
Vận dụng công thức đạo hàm của một thương ta có:
Ví dụ 16. Tính đạo hàm của hàm số y= (x2+ 2x).cos x
A. ( 2x+2).cosx+( x2+2x).sinx B. ( 2x+2).cosx-( x2+2x)
C. ( 2x+2).cosx-( x2+2x).sinx D. Lời giải khác
Hướng dẫn giải
Áp dụng công thức đạo hàm của một tích ta có:
y’=( x2+2x)’.cosx+( x2+2x).( cosx)’
⇔y’=( 2x+2).cosx-( x2+2x).sinx
Chọn C.
Ví dụ 17. Tính đạo hàm của hàm số y= (1- cos 2x) (2- sin3x)
A. y’=-2sin2x.( 2-sin3x)+3cos 3x( 1- cos2x)
B. y’=2sin2x.( 2-sin3x)-3cos 3x( 1- cos2x)
C. y’=2sin2x.( 2-sin3x)+3cos 3x( 1- cos2x)
D. Lời giải khác
Hướng dẫn giải
Vận dụng công thức đạo hàm của một tích ta có
y’=( 1-cos2x)’.( 2-sin3x)+( 1-cos2x).( 2-sin3x)’
⇔ y’=sin2x.( 2x)’.( 2-sin3x)+( 1-cos2x).( -cos3x).( 3x)’
⇔ y’=2sin2x.( 2-sin3x)-3cos 3x( 1- cos2x)
Chọn B.
Ví dụ 18. Tính đạo hàm của hàm số:
Hướng dẫn giải
Ví dụ 19. Tính đạo hàm của hàm số sau
Hướng dẫn giải
C. Bài tập vận dụng
Câu 1: Tính đạo hàm của hàm số y= sin (x2+ 4x- 20)?x
A. ( 2x- 4) cos(x2+ 4x – 20 ) B. (x2+ 4x- 20). cos(x2 +4x- 20)
C. (2x+ 4).cos( x2+ 4x- 20) D. -2cos( x2+4x- 20)
Hiển thị lời giải
+ Vận dụng công thức đạo hàm của hàm hợp ta có;
y’=cos(x2+ 4x-20).( x2+4x-20)’ = cos(x2+ 4x- 20).( 2x+ 4)
Chọn C
Câu 2: Tính đạo hàm của hàm số: y= cos( x2+√x – 2)?
A. – sin(x2+ √x – 2).( 2x+ 1/(2√x)). B.- sin ( x2+√x – 2)( x2+√x- 2)
C. – (2x+√x). sin(x2 + √x- 2) D. sin(x2+ 7x- 2)( 2x+ √x)
Hiển thị lời giải
Vận dụng công thức đạo hàm của hàm hợp ta có:
y’= -sin(x2+√x-2).(x2+√x-2)’ = – sin(x2+ √x – 2).( 2x+ 1/(2√x)).
Chọn A.
Câu 3: Tính đạo hàm của hàm số: y= 3sin 2x – 4cos 6x
A. – 6 cos2x + 24 sin6x B. 6cos2x + 24sin 6x
C. 6.cos2x + 2sin6x D. 3cos2x + 4sin x
Hiển thị lời giải
Ta có: y’=( 3sin2x)’- (4cos6x)’=3.2 cos2x+4.6 sin6x
Hay y’=6cos2x+24. sin6x
Chọn B.
Câu 4: Tính đạo hàm của hàm số: y=4 sin( √(2x+3)-x2+2x) ?
Hiển thị lời giải
Câu 5: Tính đạo hàm của hàm số y= 3tan(x2 – 1) – 4cot 4x?
Hiển thị lời giải
Câu 6: Tính đạo hàm của hàm số: y=tan( √(2×2+x))+x -10
Hiển thị lời giải
Câu 7: Tính đạo hàm của hàm số: y= sin[ (x- 1)( x+ 2) + 10] – tan(x3- x2)?
Hiển thị lời giải
Câu 8: Tính đạo hàm của hàm số: y= sin3 ( √(4x+2))?
Hiển thị lời giải
Câu 9: Tính đạo hàm của hàm số y= ( 2x+ 2) .sin( 2x- 3)?
A. sin(2x-3)+2(2x+2).cos( 2x-3).
B. 2sin(2x-3)+(2x+2).cos( 2x-3).
C. 2sin(2x-3)-2(2x+2).cos( 2x-3).
D. 2sin(2x-3)+2(2x+2).cos( 2x-3).
Hiển thị lời giải
Vận dụng công thức đạo hàm của một tích ta có:
y’=( 2x+2)’.sin(2x-3)+ (2x+2).[sin(2x-3)]’
⇔ y’=2.sin(2x-3)+( 2x+2).cos(2x-3 ) (2x-3)’
⇔ y’=2sin(2x-3)+2(2x+2).cos( 2x-3).
Chọn D.
Câu 10: Tính đạo hàm của hàm số y= ( -cotx+ tanx)3
Hiển thị lời giải
Vận dụng công thức đạo hàm của hàm hơp y= un với u= -cotx+ tanx ta được”
y’=3.(-cotx+tanx)2.(-cotx+tanx)’
Câu 11: Tính đạo hàm của hàm số y= √(sin(x3+ x2-x))
Hiển thị lời giải
Áp dụng công thức đạo hàm của hàm hợp y= √u với u= sin(x3+ x2-x) ta có:
Câu 12: Tính đạo hàm của hàm số y= √(cos3 ( 2x+2) ) ?
Hiển thị lời giải
Vận dụng công thức đạo hàm của hàm hợp y =√u với u= cos3 ( 2x+2) ta có
Câu 13: Tính đạo hàm của hàm số y= 2cos(3cot 2x)?
Hiển thị lời giải
Vận dụng công thức đạo hàm của hàm hợp và đạo hàm của hàm số lượng giác ta có;
y’=-2 sin( 3cot2x).( 3.cot2x)’
Câu 14: Tính đạo hàm của hàm số y= sin( 2x- 3).cos( 8- 4x)
A. 2 cos( 2x-3).cos( 8-4x)+2 sin( 2x-3).sin( 8-4x)
B. – 2 cos( 2x-3).cos( 8-4x)-8 sin( 2x-3).sin( 8-4x)
C. – 2 cos( 2x-3).cos( 8-4x)-4 sin( 2x-3).sin( 8-4x)
D. 2 cos( 2x-3).cos( 8-4x)+4 sin( 2x-3).sin( 8-4x)
Hiển thị lời giải
Vận dụng công thức đạo hàm của hàm số lượng giác và đạo hàm của một tích ta có:
y^’=[sin( 2x-3)]’.cos( 8-4x)+sin( 2x-3).[cos(8-4x)]’
⇔ y’=cos( 2x-3).(2x-3)’.cos( 8-4x)
+sin( 2x-3).( -sin( 8-4x) ).( 8-4x)’
⇔y’=2 cos( 2x-3).cos( 8-4x)+4 sin( 2x-3).sin( 8-4x)
Chọn D.
Câu 15: Tính đạo hàm của hàm số
Hiển thị lời giải
Vận dụng công thức đạo hàm của một thương ta có:
Câu 16: Tính đạo hàm của hàm số y= √(2×3+ x2-1) .sinx
Hiển thị lời giải
Áp dụng công thức đạo hàm của một tích ta có:
Câu 17: Tính đạo hàm của hàm số y= ( 2x +cos x) ( cos2x- sin3x)?
A. ( 2- sinx) .( cos2x-sin3x)+(2x+cosx).(2sin2x-3cos3x)
B. ( 2+ sinx) .( cos2x-sin3x)+(2x+cosx).(- 2sin2x-3cos3x)
C. ( 2- sinx) .( cos2x-sin3x)+(2x+cosx).(- 2sin2x-3cos3x)
D.Lời giải khác
Hiển thị lời giải
Vận dụng công thức đạo hàm của một tích ta có
y’=( 2x+ cosx)’.(cos2x-sin3x)+( 2x+ cosx).( cos2x-sin3x)’
⇔ y’=( 2- sinx) .( cos2x-sin3x)+(2x+cosx).(- 2sin2x-3cos3x)
Chọn C.
Câu 18: Tính đạo hàm của hàm số
Hiển thị lời giải
Vận dụng công thức đạo hàm của một thương
Câu 19: Tính đạo hàm của hàm số y= 1/cot( x2+2x) ?
Hiển thị lời giải
Câu 20: Tính đạo hàm của hàm số:
Hiển thị lời giải
Câu 21: Tính đạo hàm của hàm số sau: y=sin(x+1)/(x-2)
Hiển thị lời giải
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com
Đã có app VietJack trên smartphone, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k4: fb.com/groups/hoctap2k4/
Theo dõi chúng tôi miễn phí trên mxh facebook và youtube:
Theo dõi chúng tôi miễn phí trên mxh facebook và youtube:
Nếu thấy hay, hãy khuyến khích và chia sẻ nhé! Các phản hồi không phù phù hợp với nội quy phản hồi website sẽ bị cấm phản hồi vĩnh viễn.