Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải – Toán lớp 8

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Với Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải môn Toán lớp 8 phần Hình học sẽ giúp học viên nắm vững lý thuyết, biết cách làm các dạng bài tập từ đó có plan ôn tập hiệu quả để đạt thành tích cao trong các bài thi môn Toán 8.

                          Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

I. Lý thuyết

1. Hình thang

– Tứ giác lồi có hai cạnh đối song song là hình thang.

– Hai cạnh song song đó gọi là hai cạnh đáy.

– Hai cạnh còn sót lại là hai kế bên.

Ta có: tứ giác ABCD có AB // CD nên ABCD là hình thang 

Hai cạnh đáy là AB và CD

Hai kế bên là BC và AD

 Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

– Hai góc kề một kế bên của hình thang có tổng bằng  

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

2. Hình thang cân

– Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

– Tính chất của hình thang cân:

Hình thang ABCD cân có AB // CD

+ Hai góc kề một đáy bằng nhau Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

+ Hai kế bên bằng nhau (BC = AD)

+ Hai đường chéo bằng nhau (AC = BD)

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Dấu hiệu nhận thấy:

+ Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

+ Hình thang có hai đường chéo bằng nhau là hình thang cân.

Lưu ý: Hình thang có hai kế bên bằng nhau chưa chắc đã là hình thang cân.

3. Hình thang vuông

Hình thang vuông là hình thang có một góc vuông.

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Cho hình thang ABCD có Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải nên hình thang ABCD là hình thang vuông

                       Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

II. Các dạng bài tập và phương pháp giải

Dạng 1. Tính số đo góc

Phương pháp giải: Sử dụng tính chất hai đường thẳng song song và tổng bốn góc trong một tứ giác kết phù hợp với tri thức đã học về hình thang, hình thang cân, hình thang vuông.

Ví dụ 1: Cho hình thang ABCD có AB // CD, Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải. Tính số đo các góc của hình thang.

See also  Hình Nền Hoa Đẹp ❤️ Top 1001 Ảnh Nền Hoa Đẹp Nhất

Lời giải:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Vì AB // CD nên ta có

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (hai góc trong cùng phía)

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Vì AB // CD nên ta có:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Thay vào (*) ta được:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Ví dụ 2: Cho hình thang cân ABCD có AB // CD. Biết Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải. Tính các góc của hình thang.

Lời giải

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Vì AB // CD ta có:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (hai góc trong cùng phía)

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Mà ABCD là hình thang cân nên ta có:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Dạng 2. Minh chứng hình thang, hình thang cân hình thang vuông

Phương pháp giải: Sử dụng khái niệm hình thang, hình thang cân, hình thang vuông.

Ví dụ 1: Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Minh chứng BCDE là hình thang cân.

Lời giải:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Vì BD là đường trung tuyến của tam giác ABC nên D là trung điểm của AC.

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Vì CE là đườg trung tuyến của tam giác ABC nên E là trung điểm của AB

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Mà AB = AC (do tam gác ABC cân tại A)

Do đó: AD = AE

Xét tam giác AED có

AD = AE ( minh chứng trên)

Do đó: cân tại A 

Ta có:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (tổng ba góc trong một tam giác)

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (do tam giác AED cân tại A nên Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải )

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Lại có: cân tại A nên:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (tổng ba góc trong một tam giác)

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Từ (1) và (2) => Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Mà hai góc này ở vị trí đồng vị nên ED //BC

=> Tứ giác BCDE là hình thang

Mặt khác: cân tại  A nên Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Vậy hình thang BCDE là hình thang cân (do có hai góc kề một đáy bằng nhau).

Ví dụ 2: Cho tam giác ABC vuông cân tại A. Vẽ về phía ngoài tam giác ACD vuông cân tại D. Tứ giác ABCD là hình gì? Vì sao?

Lời giải:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Vì tam giác ABC là tam giác vuông cân tại A

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Vì tam giác ADC là tam giác vuông cân tại D

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Do đó: Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải là hai góc so le trong

Do đó: AD // BC 

Xét tứ giác ABCD ta có:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Suy ra ABCD là hình thang vuông.

Dạng 3. Sử dụng các tính chất của hình thang, hình thang cân, hình thang vuông để minh chứng bài toán.

Phương pháp giải: Vận dụng các tính chất về cạnh và góc của hình thang, hình thang cân, hình thang vuông  đã học để khắc phục bài toán

See also  99+ Hình nền iPhone x/xs/xs max đẹp độc chất lượng cao 2k 4k 8k Fulll

Ví dụ 1: Cho hình thang vuông ABCD có Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải, AB = AD , DC = 2AB và BE vuông góc với CD tại E.

a) Minh chứng: ΔABD = ΔEDB 

b) Minh chứng: ΔBEC vuông cân tại E.

Lời giải:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

a) Do ABCD là hình thang nên AB // CD => Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (hai góc so le trong)

Vì BE vuông góc với DC => Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Xét ΔABD và tam giác ΔEDB ta có:

BD chung

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Do đó: ΔABD = ΔEDB (cạnh huyền – góc nhọn)

b) Từ hai tam giác bằng nhau ở câu a ta có:

AB = ED; AD = EB (các cặp cạnh tương ứng)

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Suy ra E là trung điểm của CD

=> ED = AB = EC

Mà AB = AD (giả thuyết)

Nên ED = AB = EC = AD = EB 

Xét tam giác BEC có

EB = EC

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Vậy ΔBEC là tam giác vuông cân tại E

Ví dụ 2: Cho hình thang cân ABCD có  AB // CD, AB < CD. Gọi G là giao điểm của AD và BC. Gọi F là giao điểm của AC và BD. Minh chứng:

a) Tam giác AGB cân tại G;

b) Các tam giác ABD và BAC bằng nhau;

c) FC = FD.

Lời giải:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

a) Vì AB // CD nên ta có:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (hai góc đồng vị)

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (hai góc đồng vị)

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (do ABCD là hình thang cân)

Do đó: Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Xét tam giác AGB có:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Nên tam giác AGB là tam giác cân tại G.

b) Xét hai tam giác ABD và BAC có:

AB chung

AD = BC (do ABCD là hình thang cân)

AC = BD (do ABCD là hình thang cân)

Do đó: ΔABD = ΔBAC (c – c – c)

c) Ta có:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải (ABCD là hình thang cân)

Do đó: Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Xét tam giác FCD có:

Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải 

Suy ra tam giác FCD cân tại F

 FC = FD (điều phải minh chứng)

III. Bài tập tự luyện

Bài 1: Cho hình thang ABCD có AB // CD, Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải . Tính các góc của hình thang.

Bài 2: Cho hình thang ABCD (AB // CD), có AH và BK là hai đường cao của hình thang.

a) Minh chứng:Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

b) Biết AB = 6cm, CD = 14cm, AD = 5cm. Tính DH, AH và diện tích hình thang ABCD.

Bài 3: Cho hình thang ABCD (AB // CD) có CD = AD + BC. Gọi K là điểm thuộc đáy CD sao cho KD = AD. Minh chứng:

See also  Mẫu PSD và Vector & PNG Miễn phí Tải - Pikbest

a) AK là tia phân giác góc A.

b) KC = BC.

Bài 4: Cho tam giác ABC vuông cân tại A có AB = 4cm. Vẽ về phía ngoài tam giác ACD vuông cân tại D. Tính diện tích tứ giác ABCD.

Bài 5: Cho hình thang cân ABCD có đáy nhỏ AB bằng kế bên BC. Minh chứng CA là tia phân giác của góc Các dạng bài tập về hình thang, hình thang vuông, hình thang cân và cách giải

Bài 6: Cho hình thang ABCD (AB // CD) có E và F lần lượt là trung điểm hai đáy AB và CD. Minh chứng EF vuông góc với AB.

Bài 7: Cho hình thang ABCD vuông tại A và D. Có AB = AD = 3cm, CD = 6cm. Tính số đo góc B, góc C.

Bài 8: Cho hình thang ABCD (AB // CD), Hai đường phân giác của góc C và góc D cắt nhau tại I thuộc đáy AB. Minh chứng rằng tổng độ dài hai kế bên bằng độ dài AB của hình thang.

Bài 9: Cho hình thang cân ABCD có đáy nhỏ AB bằng kế bên AD. Minh chứng rằng AC là tia phân giác của góc C.

Bài 10: Cho tam giác ABC vuông tại A, đường cao AH. Trên BC lấy điểm M sao cho CM = CA. Đường thẳng qua M song song với CA cắt AB tại I. 

a) Tứ giác ACMI là hình gì?

b) AB + AC < AH + BC.

Xem thêm các dạng bài tập Toán lớp 8 chọn lọc hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 8 tại khoahoc.vietjack.com

Đã có app VietJack trên smartphone, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.


Nhóm học tập facebook miễn phí cho teen 2k7: fb.com/groups/hoctap2k7/

Theo dõi chúng tôi miễn phí trên mxh facebook và youtube:

Theo dõi chúng tôi miễn phí trên mxh facebook và youtube:

Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải cụ thể có đầy đủ Lý thuyết và các dạng bài có lời giải cụ thể được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.

Nếu thấy hay, hãy khích lệ và chia sẻ nhé! Các comment không phù phù hợp với nội quy comment website sẽ bị cấm comment vĩnh viễn.